		Academic Year: 2022-2023 Semester: Fall Instructors: 1. Dr. Rola Alseidi Philadelphia University Course: Matrix Analysis Duration: 75 Min
	Faculty of Science Department of Mathematics Midterm Exam	

Name:

I.D. Number:

Question One: [3 points]
If $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ and $\operatorname{det}(A)=4$. Find Let V be the set of positive real numbers and define the operations on V to be

$$
u+v=u v, k u=u^{k}, k \in \mathbb{R}
$$

(a) (1 point) Find $3+2$.
(b) (1 point) What is the zero vector in this space.

1. $\operatorname{det}(-2 A)^{-1}$
2. $\operatorname{det}\left(\left[\begin{array}{ccc}g & h & i \\ a & b & c \\ -d & -e & -f\end{array}\right]\right)$

Question Two: [8 points]
For the matrix $A=\left[\begin{array}{cc}0 & 3 \\ 2 & -1\end{array}\right]$. Find

1. The eigenvalues of the matrix A.
2. The eigenvectors of the matrix A.
3. The matrix P that diagonalizes A.
4. A^{10}.
5. What is the dominant eigenvalue of A, explain your answer.

Question Three: [4 points]
Use the power method to approximate the dominant eigenvalue of A, use the given initial vector x_{0}, the specified number of iterations is 3 and three decimal accuracy.

$$
A=\left[\begin{array}{cc}
-6 & 4 \\
8 & -2
\end{array}\right], x_{0}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], k=4
$$

Question Four: [4 points]

Given the following vectors form a basis for subspace W of \mathbb{R}^{4}. Apply Gram-Schmidt process to obtain an orthonormal basis for W.

$$
, x_{1}=\left[\begin{array}{c}
1 \\
2 \\
-2 \\
1
\end{array}\right] x_{2}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
2
\end{array}\right], x_{3}=\left[\begin{array}{l}
1 \\
8 \\
1 \\
0
\end{array}\right]
$$

Question Five: [4 points]
If $A \in M_{n}(\mathbb{R})$ with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, prove that $\operatorname{det}(A)=\prod_{i=1}^{2} \lambda_{i}$

Question Six: [4 points] Circle True or False. Read each statement carefully before answering.
(a) True False If A is diagonalizable, then there is a unique invertible matrix P such that $P^{-1} A P$ is diagonal.
(b) True False The null space of 3×4 matrix always has dimension at least one.
(c) True False If V is a 5 -dimensional vector space, then every collection of five vectors in V is linearly independent.
(d) True False Let A be 3×3 matrix with rank 2, then the homogeneous system $A x=0$ has infinity many solutions.

Question Seven: [3 points] Circle the correct answer
(a) Which of the following sets of vectors in \mathbb{R}^{2} is not a base
A. $S=\{(2,7),(4,5)\}$
B. $S=\{(2,5),(1,5)\}$
C. $S=\{(0,0),(2,8)\}$
D. $S=\{(1,2),(1,4)\}$
E. $S=\{(2,0),(0,2)\}$
F. None
(b) Let A be a 6×6 matrix with the characteristic equation

$$
\lambda^{2}(\lambda-1)(\lambda-2)^{3}=0 .
$$

The algebraic multiplicity of $\lambda=2$ is
A. 2
B. ≤ 2
C. 1
D. ≤ 1
E. 3
F. ≤ 3
(c) If the characteristic polynomial for a matrix A is

$$
p(\lambda)=(1-2 \lambda)(\lambda-1)^{2} .
$$

Then $\operatorname{tr}(2 A)-\operatorname{det}\left(A^{3}\right)=$
A. $\frac{25}{8}$
B. $\frac{11}{2}$
C. $\frac{9}{2}$
D. $\frac{39}{8}$
E. $\frac{41}{8}$
F. None
\qquad

Good Luck

